If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=17t+4.9t^2
We move all terms to the left:
10-(17t+4.9t^2)=0
We get rid of parentheses
-4.9t^2-17t+10=0
a = -4.9; b = -17; c = +10;
Δ = b2-4ac
Δ = -172-4·(-4.9)·10
Δ = 485
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{485}}{2*-4.9}=\frac{17-\sqrt{485}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{485}}{2*-4.9}=\frac{17+\sqrt{485}}{-9.8} $
| 5^(2x-3)=21(51)^x | | -u/4=-33 | | 9^(x-1)-2*3^(x)-27=0 | | (z-4)/6=7/2 | | 5(-1)-y=-5 | | 15u−14u=14 | | 6m-12+6m-12=180 | | 3÷2×t=1÷2 | | 9x+4=9x-2/3 | | 1/4m+9=-15 | | 5×-6×-5=-7x | | (2y-2)+4=4 | | 3y+5=2y-7=153 | | M=4x+11 | | 2=m/2-+7 | | -6+8m(3+4)-6m=2 | | 2+8x=65 | | 5(1)-y=-5 | | 3u−u=8 | | p/90=4/19 | | 5x+12=5(×+1)+2 | | -3y+11=-2y+8 | | 0.6+1.8=3d | | 7-6y=y-16 | | (Y-1)-y=-2 | | X-3/2=2x-11/2 | | 4200=50x^2-200x | | 14s−6s=8 | | 5w-3w=18 | | x-1/3-x+4/5=4x-1/8 | | 4b+3b=25 | | 5x6+6=12 |